Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378682

RESUMO

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Interleucina-2/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo
2.
Cancers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835538

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has been applied in the treatment of B-cell lymphoma; however, CAR-T manufacturing requires virus- or non-virus-based genetic modification, which causes high manufacturing costs and potential safety concerns. Antibody-cell conjugation (ACC) technology, which originated from bio-orthogonal click chemistry, provides an efficient approach for arming immune cells with cancer-targeting antibodies without genetic modification. Here, we applied ACC technology in Vγ9Vδ2 T (γδ2 T) cells to generate a novel off-the-shelf CD20-targeting cell therapy ACE1831 (rituximab-conjugated γδ2 T cells) against relapsed/refractory B-cell lymphoma. ACE1831 exhibited superior cytotoxicity against B-cell lymphoma cells and rituximab-resistant cells compared to γδ2 T cells without rituximab conjugation. The in vivo xenograft study demonstrated that ACE1831 treatment strongly suppressed the aggressive proliferation of B-cell lymphoma and prolonged the survival of tumor-bearing mice with no observed toxicity. Mass spectrometry analysis indicated that cell activation receptors including the TCR complex, integrins and cytokine receptors were conjugated with rituximab. Intriguingly, the antigen recognition of the ACC-linked antibody/receptor complex stimulated NFAT activation and contributed to ACE1831-mediated cytotoxicity against CD20-expressing cancer cells. This study elucidates the role of the ACC-linked antibody/receptor complex in cytotoxicity and supports the potential of ACE1831 as an off-the-shelf γδ2 cell therapy against relapsed/refractory B-cell lymphoma.

3.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909599

RESUMO

FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.

4.
Front Immunol ; 13: 960329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420263

RESUMO

Graft-versus-host disease (GvHD) is a major complication after allogeneic hematopoietic cell transplantation (HCT). Current strategies to prevent GvHD with immunosuppressive drugs carry significant morbidity and may affect the graft-versus-tumor (GVT) effect. Inflammatory bowel disease (IBD) is an intestinal inflammatory condition that affects more than 2 million people in the United States. Current strategies to prevent colitis with immunosuppressive drugs carry significant morbidity. Recently, Repulsive Guidance Molecule b (RGMb) has been identified as part of a signaling hub with neogenin and BMP receptors in mice and humans. In addition, RGMb binds BMP-2/4 in mice and humans as well as PD-L2 in mice. RGMb is expressed in the gut epithelium and by antigen presenting cells, and we found significantly increased expression in mouse small intestine after total body irradiation HCT conditioning. We hypothesized that RGMb may play a role in GvHD and IBD pathogenesis by contributing to mucosal inflammation. Using major-mismatched HCT mouse models, treatment with an anti-RGMb monoclonal antibody (mAb) that blocks the interaction with BMP-2/4 and neogenin prevented GvHD and improved survival compared to isotype control (75% versus 30% survival at 60 days after transplantation). The GVT effect was retained in tumor models. Using an inflammatory bowel disease dextran sulfate sodium model, treatment with anti-RGMb blocking monoclonal antibody but not isotype control prevented colitis and improved survival compared to control (73% versus 33% at 21 days after treatment) restoring gut homeostasis. Anti-RGMb mAb (9D1) treatment decreased IFN-γ and significantly increased IL-5 and IL-10 in the gut of the treated mice compared to the isotype control treated mice.


Assuntos
Colite , Doença Enxerto-Hospedeiro , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Inflamação , Doenças Inflamatórias Intestinais/terapia , Colite/induzido quimicamente , Imunossupressores , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Moléculas de Adesão Celular Neuronais
5.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072864

RESUMO

Natural killer (NK) cells harbor efficient cytotoxicity against tumor cells without causing life-threatening cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). When compared to chimeric antigen receptor (CAR) technology, Antibody-Cell Conjugation (ACC) technology has been developed to provide an efficient platform to arm immune cells with cancer-targeting antibodies to recognize and attack cancer cells. Recently, we established an endogenous CD16-expressing oNK cell line (oNK) with a favorable expression pattern of NK activation/inhibitory receptors. In this study, we applied ACC platform to conjugate oNK with trastuzumab and an anti-human epidermal growth factor receptor 2 (HER2) antibody. Trastuzumab-conjugated oNK, ACE-oNK-HER2, executed in vitro and in vivo cytotoxicity against HER2-expressing cancer cells and showed enhanced T cell-recruiting capability and secretion of IFNγ. The irradiated and cryopreserved ACE-oNK-HER2, designated as ACE1702, retained superior HER2-specific in vitro and in vivo potency with no tumorigenic potential. In conclusion, this study provides the evidence to support the potential clinical application of ACE1702 as a novel off-the-shelf NK cell therapy against HER2-expressing solid tumors.

6.
Biochem Biophys Rep ; 26: 100935, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644421

RESUMO

Natural killer (NK) cells, as a potential source for off-the-shelf cell therapy, attack tumor cells with low risk of severe cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). Fcγ receptor IIIA, also known as CD16, further confers NK cells with antibody-dependent cell-mediated cytotoxicity (ADCC), one mechanism of action of antibody-based immunotherapy. Here, we establish a novel human NK cell line, oNK-1, endogenously expressing CD16 along with high levels of NK activation markers and low levels of NK inhibitory markers. The long-term expansion and CD16 expression of oNK-1 cells were demonstrated. Furthermore, oNK-1 cells elicit superior cytotoxicity against cancer cells than primary NK cells. In conclusion, this study suggests that endogenous CD16-expressing oNK-1 has the potential to develop an effective NK-based therapy.

7.
Cell Rep ; 30(12): 4137-4151.e6, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209474

RESUMO

Schlafen 11 (SLFN11) was recently discovered as a cellular restriction factor against replication stress. Here, we show that SLFN11 increases chromatin accessibility genome wide, prominently at active promoters in response to replication stress induced by the checkpoint kinase 1 (CHK1) inhibitor prexasertib or the topoisomerase I (TOP1) inhibitor camptothecin. Concomitantly, SLFN11 selectively activates cellular stress response pathways by inducing the transcription of the immediate early genes (IEGs), including JUN, FOS, EGR1, NFKB2, and ATF3, together with the cell cycle arrest genes CDKN1A (p21WAF1) and GADD45. Both chromatin remodeling and IEG activation require the putative ATPase and helicase activity of SLFN11, whereas canonical extrinsic IEG activation is SLFN11 independent. SLFN11-dependent IEG activation by camptothecin is also observed across 55 non-isogenic NCI-60 cell lines. We conclude that SLFN11 acts as a global regulator of chromatin structure and an intrinsic IEG activator with the potential to engage the innate immune activation in response to replicative stress.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/genética , Genes Precoces , Proteínas Nucleares/metabolismo , Estresse Fisiológico/genética , Adenosina Trifosfatases/metabolismo , Linhagem Celular , DNA Helicases/metabolismo , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Cytotherapy ; 22(3): 135-143, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32171435

RESUMO

BACKGROUND: Cytokine-induced killer (CIK) cells are an ex vivo-expanded cellular therapy product with potent anti-tumor activity in a subset of patients with solid and hematologic malignancies. We hypothesize that directing CIK cells to a specific tumor antigen will enhance CIK cell anti-tumor cytotoxicity. METHODS: We present a newly developed method for affixing antibodies directly to cell surface proteins. First, we evaluated the anti-tumor potential of CIK cells after affixing tumor-antigen targeting monoclonal antibodies. Second, we evaluated whether this antibody-conjugation method can profile the surface proteome of CIK cells. RESULTS: We demonstrated that affixing rituximab or daratumumab to CIK cells enhances cytotoxic killing of multiple lymphoma cell lines in vitro. These 'armed' CIK cells exhibited enhanced intracellular signaling after engaging tumor targets. Cell surface proteome profiling suggested mechanisms by which antibody-armed CIK cells concurrently activated multiple surface proteins, leading to enhanced cytolytic activity. Our surface proteome analysis indicated that CIK cells display enhanced protein signatures indicative of immune responses, cellular activation and leukocyte migration. CONCLUSIONS: Here, we characterize the cell surface proteome of CIK cells using a novel methodology that can be rapidly applied to other cell types. Our study also demonstrates that without genetic modification CIK cells can be rapidly armed with monoclonal antibodies, which endows them with high specificity to kill tumor targets.


Assuntos
Anticorpos/metabolismo , Células Matadoras Induzidas por Citocinas/imunologia , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Proteoma/metabolismo , Proteômica , Linfócitos T/imunologia
9.
Blood Adv ; 3(21): 3419-3431, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714958

RESUMO

Acute graft-versus-host disease (GVHD) is a leading cause of mortality after allogeneic hematopoietic cell transplantation (HCT) mediated by dysregulated T-cell immune reconstitution. Given the role of the T-cell immunoglobulin and mucin 1 (TIM-1) surface protein in many immune processes, including organ transplantation tolerance, we asked if TIM-1 might drive post-transplant inflammation and acute GVHD. TIM-1 binds to phosphatidylserine (PtdSer), and agonism of TIM1 on immune cells is proinflammatory. HCT conditioning results in a significant supply of PtdSer from apoptosis and cellular debris. Using murine models, treatment with an antagonistic anti-TIM-1 monoclonal antibody (mAb) protects against acute GVHD while maintaining graft-versus-tumor effects. In contrast, the addition of exogenous free PtdSer worsened GVHD in a TIM-1-dependent manner. Importantly, TIM-1 blockade did not alter the expansion of donor T cells in vitro or in vivo. Instead, TIM-1 blockade reduces proinflammatory cytokines and promotes anti-inflammatory factors like carbonic anhydrase 1 and serum amyloid A1 in the gut tissue. This is mediated by TIM-1 on donor cells, as HCT of wild-type (WT) bone marrow (BM) and conventional T (Tcon) cells into TIM-1-/- knockout (KO) recipient mice showed little survival advantage compared with WT recipients, whereas WT recipients of TIM-1-/- KO Tcon cells or TIM1-/- KO BM had improved survival, in part due to the expression of TIM-1 on donor invariant natural killer T cells, which drives inflammation. Finally, in a humanized mouse xenograft GVHD model, treatment with anti-human TIM-1 antagonist mAb reduced GVHD disease burden and mortality. This supports TIM-1 as important for GVHD pathogenesis and as a target for the prevention of GVHD.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Receptor Celular 1 do Vírus da Hepatite A/antagonistas & inibidores , Animais , Anticorpos Bloqueadores/uso terapêutico , Biomarcadores , Modelos Animais de Doenças , Expressão Gênica , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/mortalidade , Transplante de Células-Tronco Hematopoéticas/métodos , Receptor Celular 1 do Vírus da Hepatite A/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Reconstituição Imune , Imuno-Histoquímica , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Taxa de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
10.
Front Oncol ; 9: 994, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632920

RESUMO

Knockdown or gene disruption of the ubiquitously expressed cell surface receptor CD47 protects non-malignant cells from genotoxic stress caused by ionizing radiation or cytotoxic chemotherapy but sensitizes tumors in an immune competent host to genotoxic stress. The selective radioprotection of non-malignant cells is mediated in part by enhanced autophagy and protection of anabolic metabolism pathways, but differential H2AX activation kinetics suggested that the DNA damage response is also CD47-dependent. A high throughput screen of drug sensitivities indicated that CD47 expression selectively sensitizes Jurkat T cells to inhibitors of topoisomerases, which are known targets of Schlafen-11 (SLFN11). CD47 mRNA expression positively correlated with schlafen-11 mRNA expression in a subset of human cancers but not the corresponding non-malignant tissues. CD47 mRNA expression was also negatively correlated with SLFN11 promoter methylation in some cancers. CD47 knockdown, gene disruption, or treatment with a CD47 function-blocking antibody decreased SLFN11 expression in Jurkat cells. The CD47 signaling ligand thrombospondin-1 also suppressed schlafen-11 expression in wild type but not CD47-deficient T cells. Re-expressing SLFN11 restored radiosensitivity to a CD47-deficient Jurkat cells. Disruption of CD47 in PC3 prostate cancer cells similarly decreased schlafen-11 expression and was associated with a CD47-dependent decrease in acetylation and increased methylation of histone H3 in the SLFN11 promoter region. The ability of histone deacetylase or topoisomerase inhibitors to induce SLFN11 expression in PC3 cells was lost when CD47 was targeted in these cells. Disrupting CD47 in PC3 cells increased resistance to etoposide but, in contrast to Jurkat cells, not to ionizing radiation. These data identify CD47 as a context-dependent regulator of SLFN11 expression and suggest an approach to improve radiotherapy and chemotherapy responses by combining with CD47-targeted therapeutics.

11.
JCI Insight ; 4(10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31092732

RESUMO

BACKGROUNDIn preclinical murine and early clinical studies of hematopoietic cell transplantation, engineering of donor grafts with defined ratios of CD4+CD25+FoxP3+ Tregs to conventional T cells (Tcons) results in the prevention of graft-versus-host disease and improved immune reconstitution. The use of highly purified primary graft Tregs for direct cell infusion has potential advantages over impure immunomagnetic selection or culture expansion, but has not been tested clinically. We performed a phase I study of the timed addition of CD34-selected hematopoietic stem cells and Tregs, followed by Tcons for the treatment of patients with high-risk hematological malignancies.METHODSWe present interim evaluation of a single-center open phase I/II study of administration of human leukocyte-matched Tregs and CD34-selected hematopoietic cells, followed by infusion of an equal ratio of Tcons in adult patients undergoing myeloablative hematopoietic stem cell transplantation (HCT) for high-risk or active hematological malignancies. Tregs were purified by immunomagnetic selection and high-speed cell sorting.RESULTSHere we report results for the first 12 patients who received Tregs of between 91% and 96% purity. Greater than grade II GVHD was noted in 2 patients in the first cohort of 5 patients, who received cryopreserved Tregs, but neither acute nor chronic GVHD was noted in the second cohort of 7 patients, who received fresh Tregs and single-agent GVHD prophylaxis. Patients in the second cohort appeared to have normal immune reconstitution compared with patients who underwent transplantation and did not develop GVHD.CONCLUSIONOur study shows that the use of highly purified fresh Tregs is clinically feasible and supports continued investigation of the strategy.TRIAL REGISTRATIONClinicalTrials.gov NCT01660607.FUNDINGNIH NHBLI R01 HL114591 and K08HL119590.


Assuntos
Transplante de Medula Óssea/métodos , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Feminino , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Adulto Jovem
12.
Clin Cancer Res ; 24(8): 1944-1953, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29391350

RESUMO

Purpose: Schlafen 11 (SLFN11), a putative DNA/RNA helicase is a dominant genomic determinant of response to DNA-damaging agents and is frequently not expressed in cancer cells. Whether histone deacetylase (HDAC) inhibitors can be used to release SLFN11 and sensitize SLFN11-inactivated cancers to DNA-targeted agents is tested here.Experimental Design:SLFN11 expression was examined in The Cancer Genome Atlas (TCGA), in cancer cell line databases and in patients treated with romidepsin. Isogenic cells overexpressing or genetically inactivated for SLFN11 were used to investigate the effect of HDAC inhibitors on SLFN11 expression and sensitivity to DNA-damaging agents.Results:SLFN11 expression is suppressed in a broad fraction of common cancers and cancer cell lines. In cancer cells not expressing SLFN11, transfection of SLFN11 sensitized the cells to camptothecin, topotecan, hydroxyurea, and cisplatin but not to paclitaxel. SLFN11 mRNA and protein levels were strongly induced by class I (romidepsin, entinostat), but not class II (roclinostat) HDAC inhibitors in a broad panel of cancer cells. SLFN11 expression was also enhanced in peripheral blood mononuclear cells of patients with circulating cutaneous T-cell lymphoma treated with romidepsin. Consistent with the epigenetic regulation of SLFN11, camptothecin and class I HDAC inhibitors were synergistic in many of the cell lines tested.Conclusions: This study reports the prevalent epigenetic regulation of SLFN11 and the dominant stimulatory effect of HDAC inhibitors on SLFN11 expression. Our results provide a rationale for combining class I HDAC inhibitors and DNA-damaging agents to overcome epigenetic inactivation of SLFN11-mediated resistance to DNA-targeted agents. Clin Cancer Res; 24(8); 1944-53. ©2018 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas Nucleares/genética , Camptotecina/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Inibidores da Topoisomerase I/farmacologia
13.
Mol Cell ; 69(3): 371-384.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395061

RESUMO

SLFN11 sensitizes cancer cells to a broad range of DNA-targeted therapies. Here we show that, in response to replication stress induced by camptothecin, SLFN11 tightly binds chromatin at stressed replication foci via RPA1 together with the replication helicase subunit MCM3. Unlike ATR, SLFN11 neither interferes with the loading of CDC45 and PCNA nor inhibits the initiation of DNA replication but selectively blocks fork progression while inducing chromatin opening across replication initiation sites. The ATPase domain of SLFN11 is required for chromatin opening, replication block, and cell death but not for the tight binding of SLFN11 to chromatin. Replication stress by the CHK1 inhibitor Prexasertib also recruits SLFN11 to nascent replicating DNA together with CDC45 and PCNA. We conclude that SLFN11 is recruited to stressed replication forks carrying extended RPA filaments where it blocks replication by changing chromatin structure across replication sites.


Assuntos
Proteínas Nucleares/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camptotecina , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Pirazinas , Pirazóis , Proteína de Replicação A/metabolismo
14.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046484

RESUMO

Cellular therapies based on permanent genetic modification of conventional T cells have emerged as a promising strategy for cancer. However, it remains unknown if modification of T cell subsets, such as Tregs, could be useful in other settings, such as allograft transplantation. Here, we use a modular system based on a chimeric antigen receptor (CAR) that binds covalently modified mAbs to control Treg activation in vivo. Transient expression of this mAb-directed CAR (mAbCAR) in Tregs permitted Treg targeting to specific tissue sites and mitigated allograft responses, such as graft-versus-host disease. mAbCAR Tregs targeted to MHC class I proteins on allografts prolonged islet allograft survival and also prolonged the survival of secondary skin grafts specifically matched to the original islet allograft. Thus, transient genetic modification to produce mAbCAR T cells led to durable immune modulation, suggesting therapeutic targeting strategies for controlling alloreactivity in settings such as organ or tissue transplantation.


Assuntos
Tolerância Imunológica/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Técnicas de Cultura de Células , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Órgãos , Receptores de Antígenos Quiméricos/genética , Fator de Transcrição STAT5 , Linfócitos T Reguladores/imunologia , Transplante de Tecidos , Tolerância ao Transplante/imunologia , Transplante Homólogo
15.
Sci Rep ; 7: 41437, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134285

RESUMO

Hepatocellular carcinoma (HCC) remains the leading cause of cancer mortality with limited therapeutic targets. The endoplasmic reticulum (ER) plays a pivotal role in maintaining proteostasis in normal cells. However, alterations in proteostasis are often found in cancer cells, making it a potential target for therapy. Polygonum bistorta is used in traditional Chinese medicine owing to its anticancer activities, but the molecular and pharmacological mechanisms remain unclear. Using hepatoma cells as a model system, this study demonstrated that P. bistorta aqueous extract (PB) stimulated ER stress by increasing autophagosomes but by blocking degradation, followed by the accumulation of ubiquitinated proteins and cell apoptosis. In addition, an autophagy inhibitor did not enhance ubiquitinated protein accumulation whereas a reactive oxygen species (ROS) scavenger diminished both ubiquitinated protein accumulation and ligand-stimulated epidermal growth factor receptor (EGFR) expression, suggesting that ROS generation by PB may be upstream of PB-triggered cell death. Nevertheless, PB-exerted proteostasis impairment resulted in cytoskeletal changes, impairment of cell adhesion and motility, and inhibition of cell cycle progression. Oral administration of PB delayed tumour growth in a xenograft model without significant body weight loss. These findings indicate that PB may be a potential new alternative or complementary medicine for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Extratos Vegetais/farmacologia , Polygonum/química , Proteostase/efeitos dos fármacos , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 7(47): 76534-76550, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27708213

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPIs) kill cancer cells by trapping PARP1 and PARP2. Talazoparib, the most potent PARPI inhibitor (PARPI), exhibits remarkable selectivity among the NCI-60 cancer cell lines beyond BRCA inactivation. Our genomic analyses reveal high correlation between response to talazoparib and Schlafen 11 (SLFN11) expression. Causality was established in four isogenic SLFN11-positive and -negative cell lines and extended to olaparib. Response to the talazoparib-temozolomide combination was also driven by SLFN11 and validated in 36 small cell lung cancer cell lines, and in xenograft models. Resistance in SLFN11-deficient cells was caused neither by impaired drug penetration nor by activation of homologous recombination. Rather, SLFN11 induced irreversible and lethal replication inhibition, which was independent of ATR-mediated S-phase checkpoint. The resistance to PARPIs by SLFN11 inactivation was overcome by ATR inhibition, mechanistically because SLFN11-deficient cells solely rely on ATR activation for their survival under PARPI treatment. Our study reveals that SLFN11 inactivation, which is common (~45%) in cancer cells, is a novel and dominant resistance determinant to PARPIs.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Recombinação Homóloga , Humanos , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Clin Cancer Res ; 21(18): 4184-93, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25779942

RESUMO

PURPOSE: SLFN11 was identified as a critical determinant of response to DNA-targeted therapies by analyzing gene expression and drug sensitivity of NCI-60 and CCLE datasets. However, how SLFN11 is regulated in cancer cells remained unknown. Ewing sarcoma, which is characterized by the chimeric transcription factor EWS-FLI1, has notably high SLFN11 expression, leading us to investigate whether EWS-FLI1 drives SLFN11 expression and the role of SLFN11 in the drug response of Ewing sarcoma cells. EXPERIMENTAL DESIGN: Binding sites of EWS-FLI1 on the SLFN11 promoter were analyzed by chromatin immunoprecipitation sequencing and promoter-luciferase reporter analyses. The relationship between SLFN11 and EWS-FLI1 were further examined in EWS-FLI1-knockdown or -overexpressing cells and in clinical tumor samples. RESULTS: EWS-FLI1 binds near the transcription start site of SLFN11 promoter and acts as a positive regulator of SLFN11 expression in Ewing sarcoma cells. EWS-FLI1-mediated SLFN11 expression is responsible for high sensitivity of Ewing sarcoma to camptothecin and combinations of PARP inhibitors with temozolomide. Importantly, Ewing sarcoma patients with higher SLFN11 expression showed better tumor-free survival rate. The correlated expression between SLFN11 and FLI1 extends to leukemia, pediatric, colon, breast, and prostate cancers. In addition, expression of other ETS members correlates with SLFN11 in NCI-60 and CCLE datasets, and molecular experiments demonstrate that ETS1 acts as a positive regulator for SLFN11 expression in breast cancer cells. CONCLUSIONS: Our results imply the emerging relevance of SLFN11 as an ETS transcription factor response gene and for therapeutic response to topoisomerase I inhibitors and temozolomide-PARP inhibitor combinations in ETS-activated cancers.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Motivos de Aminoácidos , Camptotecina/química , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dano ao DNA , Dacarbazina/análogos & derivados , Dacarbazina/química , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Sarcoma de Ewing/patologia , Análise de Sequência de DNA , Temozolomida
18.
DNA Repair (Amst) ; 28: 107-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25758781

RESUMO

Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA/genética , Mutação , Linhagem Celular Tumoral , Regulação para Baixo , Genes , Humanos , National Cancer Institute (U.S.) , Estados Unidos
19.
J Virol ; 87(3): 1699-707, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175371

RESUMO

Autophagy, a general homeostatic process for degradation of cytosolic proteins or organelles, has been reported to modulate the replication of many viruses. The role of autophagy in human T-cell leukemia virus type 1 (HTLV-1) replication has, however, been uncharacterized. Here, we report that HTLV-1 infection increases the accumulation of autophagosomes and that this accumulation increases HTLV-1 production. We found that the HTLV-1 Tax protein increases cellular autophagosome accumulation by acting to block the fusion of autophagosomes to lysosomes, preventing the degradation of the former by the latter. Interestingly, the inhibition of cellular autophagosome-lysosome fusion using bafilomycin A increased the stability of the Tax protein, suggesting that cellular degradation of Tax occurs in part through autophagy. Our current findings indicate that by interrupting the cell's autophagic process, Tax exerts a positive feedback on its own stability.


Assuntos
Autofagia , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Replicação Viral , Linhagem Celular , Citoplasma/ultraestrutura , Humanos , Fagossomos/metabolismo , Fagossomos/ultraestrutura
20.
Retrovirology ; 9: 114, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23256545

RESUMO

BACKGROUND: Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. RESULTS: Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53 -/- genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53 +/+ versus Tax+p53 -/- mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1 -/- mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1 +/+ counterparts. CONCLUSIONS: Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Viral , Produtos do Gene tax/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Viral/genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Produtos do Gene tax/genética , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 2C , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...